	OLTRAVIOLET SPECTRA AND ACID DISSOCIATION CONSTANTS								
	pH 1		-Distd H ₂ O		pH 11		Methanol		
	λ_{max} ,		λ_{max}		λ_{max} ,		λ ms x.		
Compds	mµ	e	$\mathbf{m}_{\boldsymbol{\mu}}$	é	mμ	e	$\mathbf{m} \boldsymbol{\mu}$	e	pK_{a}
6-Thioguanine ^a	258	8100			242	8700			8.2
-	347	20900			270	7200			
					322	16000			
6-Methylthioguanine ^b	241	7000			228	20200			
• •	273	10000			313	10600			
	317	13000							
6-Selenoguanine ^c	263	5600	360	10800	318	6900			7.81,7.62ª
	372	16500							
6-Methylselenognanine	329	12700	246	8900	317	12300			
v 0			315	12400					
		[4-6							
6-Thioguanosine ^e	257	8800			252	14700			8.33
	342	24800			319	21000			
6-Selenoguanosine	267	4600	264	5600	256	10800			
	365	18200	357	22300	330	17200			
6-Methylthioguanosine ¹							221	15300	
							245	14400	
							310	11000	
6-Methylselenoguanosine			252	9700			221	12900	
			316	13100			252	10000	
							314	10100	
6-Selenoinosine			235	7700					
			345	11200	(Phosphate-citrate buffer, pH 7)				
6-Methylselenoinosine			229	8400	•		230	8000	
•			302	13500			300	17600	

TABLE I RAVIOLET SPECTRA AND ACID DISSOCIATION CONSTANTS

^a G. B. Elion and G. Hitchings, J. Amer. Chem. Soc., 77, 1676 (1957). ^b J. A. Montgomery and L. B. Holum, *ibid.*, 79, 2185 (1957). ^c See ref 2. ^d A. F. Ross, private communication (it was determined by a spectrophotometric method). ^e J. J. Fox, I. Wempen, A. Hampton, and I. L. Doerr, J. Amer. Chem. Soc., 80, 1669 (1958). ^f C. W. Noell and R. K. Robins, J. Mcd. Pharm. Chem., 5, 1074 (1962). ^g See ref 7.

TABLE II

EFFECT OF 6-THIOGUANINE, SELENOGUANNE, SELENOGUANOSINE, METHYLSELENOGUANINE, AND METHYLSELENOGUANOSINE ON THE GROWTH OF L-5178Y

	/% survival				
	1.0×10^{-4}	1.0 × 10 ⁻⁵	1.0×10^{-6}		
Control 100%	M	М	М		
Thioguanine	4	9	33		
Selenoguanosine	4	8	31		
Selenoguanine	12	20	45		
Methyl selenoguanosine	21	46	80		
Methyl selenoguanine	24	45	82		

 $\mathrm{H_{2}O}$ and then cooled to room temp. All determinations were made in duplicate.

Stability Studies.—The half-life from the height of the 360m μ peak of 1 in H₂O (pH 6.01) at room temp was about 24 hr, in phosphate buffer at pH 7.0 2.5 hr (as compared with 7 hr for selenoguanine). Methylselenoguanine and methylselenoguanosine were stable in both conditions. Because of the demonstrated instability of 6-selenoguanine and 6-selenoguanosine, fresh solns of these two compds were prepared for biological studies.

Biological Testing. (1) Tissue Culture Study.—The results of the cell culture using the L-5178Y cell are shown in Table II. The cell viability was determined by the dil agar colony method.⁸ Thioguanine, Se-guanine, Se-guanosine, and their derivatives inhibited cell division and caused cell death over a conen range from 1.0×10^{-4} mole to 1.0×10^{-6} mole after 2 hr incubation. 6-Selenoguanosine was found to have activity approx equal to thioguanine. Methylseleno derivatives were less active than thioguanine at lower dosage. It is of interest that selenoguanosine is more soluble than selenoguanine or thioguanine. This may increase its application.

(2) Enzyme Study.—Ross and Parks⁹ found that selenoguanine was converted to selenoguanosine by a highly purified enzyme (PNP) isolated from human red blood cells. However, the gnanase isolated from S-180 cells does not react with selenoguanine. Details will be published elsewhere.

Acknowledgment.—The author is indebted to Miss Andrea Gorske for obtaining the spectroscopic and potentiometric data, to Drs. G. Fischer and M. Y. Wang Chu for carrying out the biological tests, and to Drs. R. E. Parks, Jr., and P. Calabresi for their encouragement during the course of this investigation.

Amebicides. *l*-Emetine Derivatives

B. GRADNIK, L. DALL'ASTA, AND A. PEDRAZZOLI*

Research Department, Midy, Milan, Italy

Received July 20, 1970

Some N-hydroxyalkyl derivatives of *l*-emetine have a greater amebicidal activity and a lower toxicity than the parent compound.^{1,2} We have now synthetized some N-derivatives by the reaction of *l*-emetine with 1-alkyloxy-, 1-alkylthio-, 1-dialkylamino-2,3-epoxypropane (see Table I). The compounds have been evaluated for their acute toxicity (LD₅₀), for their activity against *E*. histolytica,³ and Ehrlich carcinoma.⁴ Com-

⁽⁸⁾ M. Y. Chu and G. A. Fischer, Biochem. Pharmacol., 17, 753 (1968).

⁽⁹⁾ A. F. Ross and R. E. Parks, Jr., unpublished data.

⁽¹⁾ D. E. Clark, R. F. K. Meredith, A. C. Ritchie, and T. Walker, J. Chem. Soc., 2490 (1962).

⁽²⁾ A. C. Ritchie, D. R. Preston, T. Walker, and K. D. Whithing, *ibid.*, 3385 (1962).

⁽³⁾ J. E. Linch, B. J. Banforth, and D. Goeckeritz, Antibiot. Chemother., 6, 330 (1956).

⁽⁴⁾ J. S. Evans, G. D. Mengel, J. Cern, and R. L. Johnston, Antibiot. Annu., 1958-1959, 565 (1960).

No.	R	Heating time, day (yield)	Mp, °C (sint to °C)	$[\alpha]^{20}$ D, ^a degrees	$R \mathbf{E}^{b}$	Formula ^o	LD50, mg/kg iv	% inhib, Ehrlich ascites carcinoma	against E. histolytica MIC, µg/ml
1	Н	7 (67)	205-207	-3	1.40	$\mathrm{C_{32}H_{46}N_2O_5}{\cdot}2\mathrm{HCl}{\cdot}\mathrm{C_3H_8O}$	35	Inactive	2 0 0
2	CH₃	(37)	(130) 218-220 (192)	-2 7	1.83	$C_{33}H_{48}N_2O_5\cdot 2HCl$	51	Inactive	100
3	$N[(CH_2)_4CH_3]_2$	3 (56)	213–216 (183)	+44	0.75	$\mathbf{C_{42}H_{67}N_{3}O_{3}\cdot 3HCl}$	31	4 5	10 0
4	NC_5H_{10}	(50) 1.5 (52)	244-248 (204)	+44	0.63	$\mathrm{C}_{\mathtt{37}}\mathrm{H}_{\mathtt{55}}\mathrm{N}_{\mathtt{3}}\mathrm{O}_{\mathtt{5}}\cdot\mathtt{3}\mathrm{HCl}\cdot0.5\mathrm{C}_{\mathtt{3}}\mathrm{H}_{\mathtt{8}}\mathrm{O}$	37	20	40
5	NC4H8O	2 (34)	223–225 (190)	+36	0.65	$\mathrm{C_{36}H_{53}N_{3}O_{6}\cdot 3HCl}$	28	60	4 0
6	N NCH,	d (21)	(100) 228–232 (d)	+4	0.65	$\mathrm{C}_{37}\mathrm{H}_{57}\mathrm{N}_{4}\mathrm{O}_{5}\!\cdot\!4\mathrm{HCl}$	25		100
7		d (33)	238-240 (215)	+66	0.86	$\mathrm{C}_{40}\mathrm{H}_{55}\mathrm{ClN}_{3}\mathrm{O}_{5}\cdot\mathrm{3HCl}$	17.5	80	40
8	OC_2H_3	8 (20)	190-192	- 30	1.42	${\rm C}_{34}{\rm H}_{50}{\rm N}_{2}{\rm O}_{6}\cdot 2{\rm HCl}$	20	Inactive	4 0
9	$O(CH_2)_6CH_3$	(20) 9 (55)	128-130	-8	0.88	${\rm C}_{40}{\rm H}_{60}{\rm N}_{2}{\rm O}_{6}\cdot 2{\rm HCl}\cdot {\rm C}_{3}{\rm H}_{8}{\rm O}$	27	Inactive	20
10°	$OCH_2CH(C_2H_5)(CH_2)_3CH_3$	(39) (39)	(87) 165–168 (130)	-20	1. 7 5	$C_{40}H_{62}N_{2}O_{6}\cdot 2HCl$	31.5	Inactive	40
11		$\frac{2}{(28)}$	170–173 (151)	-14	1.78	$\mathrm{C}_{39}\mathrm{H}_{51}\mathrm{N}_{2}\mathrm{O}_{7}\!\cdot\!2\mathrm{HCl}$	9	Inactive	40
12	osen	4 (59)	168–172 (157)	-5	1.79	$\mathrm{C_{39}H_{52}N_2O_6S\cdot 2HCl'}$	34	20	100
13	$\operatorname{SCH}(\operatorname{CH}_3)\operatorname{C}_2\operatorname{H}_3$	1.5	190-194	-45	1.78	$C_{36}H_{54}N_{2}O_{5}S\cdot 2HCl\cdot 3H_{2}O'$	83.5	20	40
14	$SC(CH_3)_3$	(32) 2 (42)	(172) 182–184 (152)	-28	1.91	$\mathrm{C_{36}H_{54}N_2O_5S\cdot 2HCl^{\prime}}$	82.5	10	100
15	$SCH_2C_6H_5$	(12) d (24)	171–175 (153)	-15	2.03	$\mathrm{C}_{\mathfrak{z}\mathfrak{g}}\mathrm{H}_{\mathfrak{z}\mathfrak{2}}\mathrm{N}_{2}\mathrm{O}_{\mathfrak{z}}\mathrm{S}\cdot\mathrm{2H}\mathrm{Cl}^{\mathfrak{z}}$	4 5	Inactive	40
16	SCH ₂ CO	2 (19)	158-162 (123)	-9	1.76	${\rm C}_{37}{\rm H}_{50}{\rm N}_{2}{\rm O}_{6}{\rm S}\cdot 2{\rm H}{\rm Cl}\cdot 0.66{\rm C}_{3}{\rm H}_{8}{\rm O}^{\prime}$	54	Inactive	4 0
17	SCH ₂ CONH OCH ₃	1 (20)	203–204 (135)	-11	0.84	$C_{42}H_{56}N_{3}O_{8}S\cdot 2HCl'$	25	23	200
	<i>l</i> -Emetine					$C_{29}H_{40}N_2O_4\cdot 2HCl\cdot 5H_2O$	15.1	55	10-20

^a CHCl₃ (c 1). ^b Compd gave a single spot on the with Stahl silica gel HF₂₅₄ (R_E = relative mobility on the moistened with CHCl₃-MeOH (85:15) with *l*-emetine as unity). ^c Analytical results obtained for C, H, Cl, N were within ±0.4% of theoretical values. ^d 8 hr at 100° under N₂. ^e The biochemical determination of cardiotoxicity according to Appelt and Heim⁵ J. Pharm. Sci., 57, 1428 (1968); shows that *l*-emetine decreases the oxydation rate on the pyruvates (19%) and lactates (20%) to a greater extent than 10 (11 and 6%, respectively). ^f Also analyzed for S.

pound 10 has also been subjected to biochemical determination of cardiotoxicity according to Appelt and Heim.⁵

Experimental Section

Preparation and Characterization of Compounds.-Most of the

compounds were prepared by condensation in EtOH of an appropriate epoxide (0.04 mole) with *l*-emetine \cdot 2HCl (0.01 mole) at 37° for 1–9 days. The oily residue obtd by evaps the solvent was taken up in dil HCl. The filtered acid soln was neutralized potentiometrically and extd with Et₂O. The combined exts were dried and acidified with HCl-*i*-PrOH. The cryst hydrochlorides were filtered, dried, analyzed, and chromatographed. The purification procedure had to be repeated until pure products were obtained. Melting points were taken with a Tottoli apparatus and are uncorrected.

In vitro activity

⁽⁵⁾ G. D. Appelt and H. C. Heim, J. Pharm. Sci., 57, 1428 (1968).